Friday, March 26, 2021 12:10pm to 1:10pm
About this Event
Distinguished Professor, National Inatitute of Biomedical Genetics, India
Sprints and Hops: The Global Journey of a Mutant SARS-CoV-2 Coronavirus
SARS-CoV-2 was first reported from China. Within three months, it evolved to 10 additional subtypes. Two evolved subtypes (A2 and A2a) carry a non-synonymous Spike protein mutation (D614G). We conducted phylodynamic analysis of over 70,000 SARS-CoV-2 coronaviruse sequences worldwide, and found that the mutant subtype (614G) outcompeted the pre-existing type (614D), significantly faster in Europe and North-America than in East Asia. We identified a novel neutrophil elastase (ELANE) cleavage site introduced in the G-mutant, near the S1-S2 junction of the Spike protein. We hypothesised that elevation of neutrophil elastase level at the site of infection will enhance the activation of Spike protein thus facilitating host cell entry for 614G, but not the 614D, subtype. The level of neutrophil elastase in the lung is modulated by its inhibitor α1-antitrypsin (AAT). AAT prevents lung tissue damage by elastase. However, many individuals exhibit genotype-dependent deficiency of AAT. AAT deficiency eases host-cell entry of the 614G virus, by retarding inhibition of neutrophil elastase and consequently enhancing activation of the Spike protein. AAT deficiency is highly prevalent in European and North-American populations, but much less so in East Asia. Therefore, the 614G subtype is able to infect and spread more easily in populations of the former regions than in the latter region. Our analyses has provided a molecular biological and evolutionary model for the observed differential spread of the 614G subtype, than the original 614D subtype.
Please let us know if you require an accommodation in order to participate in this event. Accommodations may include live captioning, ASL interpreters, and/or captioned media and accessible documents from recorded events. At least 5 days in advance is recommended.